
Product line management

White paper

December 2009

Requirements engineering for

systems and software product lines.

Charles W. Krueger, Ph.D., BigLever Software

Professor Ken Jackson, Rational software,

IBM Software Group

Ready for

software

Business

Partner

Cathy Martin

Contents

2 Introduction

3 Requirements engineering for

single systems

4 Conventional approaches

to managing product line

requirements

10 The second-generation product

line approach from IBM and

BigLever

19 Conclusions

Introduction

The key to business success depends on the infusion of new ideas into the way

products are brought to the marketplace. To achieve this delivery goal, today’s

product development organizations must deliver a product line—a portfolio of

similar products with variations in features and functions—rather than just one

or more individual products. Software product line (SPL) management—or more

precisely, systems and software product line engineering and delivery—is a new

approach that helps organizations develop, deliver and evolve an entire product

line portfolio, through each stage of the development lifecycle, with much higher

degrees of efficiency than before.

IBM and BigLever Software (BigLever) have joined forces to provide an innovative

and pragmatic new SPL solution that offers organizations the infrastructure, tools,

best practices and methods they need to create an advanced and efficient means of

production for their systems and SPLs. Similar to what is seen in manufacturing,

companies that adopt the SPL approach to engineering and delivery can experi-

ence a jump in productivity, quality, time to market and product-line scalability.

The SPL solution from IBM and BigLever includes the BigLever Gears SPL

Lifecycle™ Framework, which supports second-generation product line engi-

neering. The BigLever Gears framework integrates existing or new tools, assets

and processes across the full system and software development lifecycle. It also

comprises IBM Rational® software, which integrates with the BigLever Gears

SPL Lifecycle Framework to extend the full systems and software development

lifecycle capabilities for the delivery of system and software product lines. The

tools can include IBM Rational DOORS®, IBM Rational Rhapsody®, IBM Rational

ClearCase® , IBM Rational Synergy, IBM Rational Team Concert™ and IBM

Rational Quality Manager software.

Requirements engineering for systems

and software product lines.

Page 2

Cathy Martin

Requirements engineering for systems

and software product lines.

Page 3

Highlights
Additionally, the SPL solution from IBM and BigLever includes the IBM

Rational DOORS/BigLever Software Gears Bridge integration. The Rational

DOORS/BigLever Gears Bridge product extends the requirements engineering

capabilities of Rational DOORS software to support the requirements develop-

ment of a product line. The Rational DOORS/BigLever Gears Bridge solution

allows you to create a single, consolidated collection of requirements for the

entire portfolio. The solution maintains just one copy of common requirements

that are shared across all products while allowing requirements diversity to be

expressed using explicit variation points. As a result, you can manage require-

ments that need to differ from one product to another.

Requirements engineering for single systems

A typical project has requirements at several levels. The top level is a set of

stakeholder requirements that expresses product requirements using a problem

domain perspective. These should be completely independent of any proposed

solution. System requirements are at the second level, where an abstract solution

is postulated but the solution still allows many different possible implementa-

tions. In other words, these system requirements should be as abstract as possible

and should not preempt the final design solution. At the third level are subsystem

requirements. The number of levels below this level depends on the scale and

complexity of the systems developed.

The Rational DOORS/BigLever Gears

Bridge solution allows you to create

a single, consolidated collection of

requirements for the entire portfolio.

A typical project has requirements

at several levels: stakeholder require-

ments at the top level, system

requirements at the second level and

potentially more levels depending on

the scale and complexity of the sys-

tems developed.

Cathy Martin

Requirements engineering for systems

and software product lines.

Page 4

Highlights
Figure 1 shows a typical model for the top three levels of requirements. It also

shows that requirements at each level must exist in conjunction with a means

of demonstrating that the developed product has met its requirements. At each

level, the model aligns requirements with tests, which help ensure that the

requirements have been satisfied. These tests have a “qualifies” relationship

with the appropriate requirements, while the requirements at each level satisfy

the requirements at the levels above and below.

Stakeholder
requirements

Stakeholder
tests

System
requirements

Subsystem A
requirements

Subsystem B
requirements

Subsystem C
requirements

Subsystem A
tests

Subsystem B
tests

Subsystem C
tests

Qualifies

Qualifies

Qualifies

Qualifies

Qualifies

Satisfies

Satisfies

Satisfies

System
tests

Satisfies

Satisfies

Requirements at each level must

exist in conjunction with a means of

demonstrating that the developed

product has met its requirements.

Rational DOORS software helps

organizations develop and maintain

requirements for product lines.

Figure 1: Top-level project requirements

Conventional approaches to managing product line requirements

For more than a decade, many organizations have used Rational DOORS software

to develop and maintain requirements for product lines. The two most prevalent

ways of using Rational DOORS software to create and manage requirements for a

product line are in the next two sections.

Cathy Martin

Requirements engineering for systems

and software product lines.

Page 5

Highlights

Clone-and-own

The clone-and-own approach starts by copying all the Rational DOORS assets for

an existing product into a separate folder or project. This is the cloning action.

The team responsible for this new variant then assumes ownership of the cloned

version and makes the changes that are necessary to create the new product

variant. These changes are valid only for the new product variant: they will

not affect the original product from which the variant was cloned.

Figure 2 shows an example of two new products—product Q and product

R—being created from the assets of product P.

Figure 2: The clone-and-own approach

Traditionally, organizations have used

Rational DOORS to support a clone-

and-own approach to developing

product line requirements.

Cathy Martin

Requirements engineering for systems

and software product lines.

Page 6

Highlights
Product Q requires changes to the stakeholder requirements and consequen-

tial changes to the systems requirements, which in turn change requirements

of subsystem B. There are also consequential changes to the tests for each

changed module.

Product R needs different changes to the stakeholder requirements and

consequential changes to the systems requirements, which in turn change

requirements for subsystem A instead of subsystem B.

The orange modules in figure 2 indicate the modules that must change to create

products Q and R. The white modules are unchanged from the original product P.

Although the diagram suggests that the changed modules are completely differ-

ent, in practice, there are a relatively low number of changes compared to the

overall number of requirements present. The percent of changed requirements

is represented by the red rectangles in product Q and the green rectangles in

product R. The unchanged requirements—represented by the rest of the orange

module—are common requirements that are reused across the products.

The main problem with this approach is that there is much information redun-

dancy. The more products there are, the more copies will need to be made, and

consequently the redundancy increases.

The clone-and-own approach can

be bogged down by information

redundancy.

Cathy Martin

Requirements engineering for systems

and software product lines.

Page 7

Highlights
Since disk space is relatively cheap these days, multiple copies do not pose a prob-

lem. The real problem is keeping the common requirements up-to-date. Often

a common requirement must be changed across the entire current product line.

As the number of products increases, so does the overhead of ensuring that the

common requirements are kept in step. Sometimes there are many changes to

many common requirements at differing levels throughout the product variants’

requirements assets—making the updates more time consuming and complicated.

The problem can be further exacerbated when there are multiple versions of each

product variant. In this case, it is necessary to determine which versions of the

products will keep the old requirements and which will incorporate the new ones.

Attributes

Another way of using Rational DOORS software to derive a new product from

an existing product line is to use attributes. There are several ways of doing this.

You can create a multivalued attribute that contains the names of all products

and sometimes versions of products. Then you tag the requirements in each mod-

ule to indicate the products for which each requirement is valid. The number

of enumeration values can become very large, making it quite difficult to ensure

that the requirements are tagged correctly.

Another way of using attributes that avoids the large number of enumeration

values is to use a Boolean attribute for each product. Developers set the attribute

value to true if the requirement is in a product and false if it is not. With this

approach, it is much easier to see the requirements that are relevant for each

product, and it is possible to create views based on Rational DOORS filters to view

the requirements for a specific product or to compare a set of products. However,

there is still the problem of multiple product variants. Here, instead of having a

large number of enumeration values, one has a large number of attributes.

The problem with redundancy is

that it makes it harder to homog-

enize common requirements: as the

number of products increases, so

does the difficulty of ensuring that

the common requirements are kept

in step.

Another way of using Rational

DOORS software to derive a new

product from an existing product

line is to use attributes.

Cathy Martin

Requirements engineering for systems

and software product lines.

Page 8

It is not easy to see which requirements are common to all products using either

attributes approach. Introducing a new common requirement entails setting it as

valid for all products, which is both time-consuming and error-prone.

Conclusion on using conventional approaches to manage product variants

For small numbers of requirements, products and product variants, the product

line requirements management methods listed above may be sufficient. However,

they do not scale well to support the typical product line requirements sets found

today. More important, the tactical requirements-engineering challenges are

large enough to inhibit a company’s ability to expand the scale and scope of its

portfolio, take advantage of strategic marketplace windows, competitively price

products and optimize product quality.

At the heart of the problem is the product-centric perspective adopted by

companies. This is illustrated in figure 3. The vertical blue bars highlight the

product-centric focus on the development lifecycle of the individual products in

a product line. The red lines illustrate the complex, tangled and labor-intensive

interactions, dependencies and coordination activities required to take advantage

of what is common and to manage all the variations among the similar products

in the product line portfolio.

The clone-and-own and attributes

approaches do not scale well to

support the complex product line

requirement sets found in prod-

ucts today.

Highlights

Cathy Martin

Requirements engineering for systems

and software product lines.

Page 9

Test
casesQuality

assurance

Sub-
system
require-
ments
(SSRs)

Developers

System
require-
ments
(SRs)

System
engineers

Stake-
holder

require-
ments
(SHRs)

Product
marketing

System
engineers

Product
marketing

System
engineers

Product
marketing

Product A

Test
cases

Product B

Test
cases

Product N

Quality
assurance

Developers

Quality
assurance

Developers

Sub-
system
require-
ments
(SSRs)

System
require-
ments
(SRs)

Stake-
holder

require-
ments
(SHRs)

Sub-
system
require-
ments
(SSRs)

System
require-
ments
(SRs)

Stake-
holder

require-
ments
(SHRs)

Order N2 complexity Vertical
product

perspective

Figure 3: Complex interdependencies from the product-centric perspective

The crux of the problem lies in the fact that the number of red “interdependency”

lines grows by the square of the number of products in the product line. That is,

each of the N products illustrated in the product line have interdependencies with

the other N-1 products, so the total number of interdependency lines is propor-

tional to N×(N-1), or N2-N. This explains why engineering complexity and effort

increase exponentially faster than the growth of a product line. Making matters

worse, the conventional product-centric traceability relationships between the

different stages of the lifecycle for an individual product interact with the product

interdependency relationships, multiplying complexity and introducing dis-

sonance across the stages of the lifecycle.

Cathy Martin

Requirements engineering for systems

and software product lines.

Page 10

These tactical development challenges have led to the search for an alterna-

tive paradigm that directly tackles the complexity issue to provide a more

efficient and scalable approach to the development of product lines. The rest of

this paper describes a new approach: second-generation systems and software

product line development.

The second-generation product line approach from IBM and BigLever

The second-generation product line approach is a new development paradigm.

In the conventional product line approach, each product is worked on by a team

devoted to that product. In the second-generation product line approach, a team

addresses a complete product line.

“We can’t solve problems by using the same thinking we used when we

created them.”

—Albert Einstein

Highlights

It is more effective to view prod-

uct line engineering as creating a

means of production rather than

viewing it as creating a multitude

of interrelated products.

The second-generation product line

approach is a new development para-

digm in which a team addresses a

complete product line.

A shift in perspective to an efficient means of production

Organizations mired in the complexity, inefficiency and pains of product-centric

product line engineering experience a second-generation product line epiphany

when a shift in perspective reveals a simpler solution. Analogous to engineering a

product line of hard goods, it is much more effective to view product line engi-

neering as creating a means of production—a single system capable of producing

all of the products in a product line—rather than view product line engineering

as creating a multitude of interrelated products. The powerful, though subtle,

essence of the second-generation product line epiphany is the focus on that singu-

lar means of production rather than on a multitude of products.

Cathy Martin

Requirements engineering for systems

and software product lines.

Page 11

Test

cases
Quality

assurance

SSRs

Developers

SRs
System

engineers

SHRs
Requirements

engineers

Product line
management

Feature
profiles

Test

cases

Product AReusable core assets Product B ... Product N

SSRs

SRs

SHRs SHRs

Test

cases

Test

cases

SSRs SSRs

SRs

SHRs

SRs

Key

 Variation point

 Projection

BigLever Gears
product

configurator

Feature
variability

model

Profile

A

Simplicity of a
single system

Horizontal
core asset

perspective

SHRs = Shareholder requirements

SRs = System requirements

SSRs = Subsystem requirements

Figure 4: Change of perspective

Figure 4 shows the single-system perspective for producing the same product

line as in figure 3.

Cathy Martin

Requirements engineering for systems

and software product lines.

Page 12

Highlights
However, now the focus is on the means of production, which is inside the red

box. The same products, A through N (on the right side of the diagram), are

automatically produced by a singular means of production comprising:

Feature variability model (top left), which describes optional and variable

features for the products in a product line.

Feature profiles (top right), which describe how each product in a product

line is uniquely defined in terms of choices for each of the optional and

variable features.

Reusable second-generation product line assets (left), which contain variation

points with logic that references the features in the feature variability model.

These variation points indicate the circumstances under which any asset—such

as a requirement, architecture, model and design, source code component, test

case, and document—will be included, excluded or modified, depending on

features selected in a feature profile.

Second-generation product line product configurator (center right), which

automates the composition and configuration of products from the reusable

second-generation product line assets, using the feature profiles to interpret

the variation points in the assets.

As highlighted in figure 4, the blue bars provide the critical shift in perspective

from the vertical product-centric focus of figure 3 to the horizontal single-system

focus in figure 4. By shifting perspective to focus on the singular means of

production rather than the multitude of products, you can dramatically reduce

the complexities of managing product interdependencies. Moreover, automated

production can result in dramatic increases in the number of products that you

can effectively create, deploy and maintain. And with the single-system perspec-

tive, you can base the scale and the scope of diversity of a product line on business

opportunities and profitability—rather than being constrained by the complex

limitations imposed by the product-centric perspective.

By shifting perspective to focus on

the singular means of production

rather than the multitude of prod-

ucts, you can dramatically reduce

the complexities of managing prod-

uct interdependencies.

Cathy Martin

Requirements engineering for systems

and software product lines.

Page 13

Highlights
A very important aspect of the shift in perspective indicated in figure 4 is the

introduction of product line management. This is where the marketing depart-

ment identifies the nature and extent of the required feature variability and

defines future products using a feature profile. From an efficiency point of view,

it is vital to realize that, in moving from a product-centric way of working, we

have introduced an important layer of abstraction that is the feature variability

model. The assets are then mapped, not to individual products, but to specific

features. This means that, once a mapping has been created in the assets for any

feature, then that feature can be configured in any future product at zero cost of

development. This is where a huge savings in effort occurs, producing a massive

improvement in business efficiency and flexibility.

BigLever Gears SPL Lifecycle Framework

BigLever Gears SPL Lifecycle Framework provides an automated means of pro-

duction for your product line. By focusing your business and engineering teams

on the operation of your production line, your organization can plan, develop,

deploy and evolve your product line portfolio, seamlessly and efficiently, across

the development and delivery lifecycle.

The framework enables the second-generation product line integration of exist-

ing or new tools, assets and processes across the system and software development

lifecycle. It provides a common set of industry-standard second-generation product

line concepts and constructs for virtually all tools and assets, including:

A feature model, which is designed to uniformly express the full product

line feature diversity for all assets in all stages of the system and software

development lifecycle.

A single variation point mechanism, which is designed to be uniformly

applied to all tools and their associated assets in all stages of the system and

software development lifecycle.

An automated product configurator, which can automate—with the push

of a button—the assembly and configuration of assets from each stage of the

lifecycle to help produce all products in a product line.

In moving from a product-centric

way of working, we have introduced

an important layer of abstraction

that is the feature variability model,

which maps assets to features

instead of products.

Using the BigLever Gears SPL

Lifecycle Framework, organizations

can plan, develop, deploy and evolve

product line portfolios across the

development and delivery lifecycle.

Cathy Martin

Requirements engineering for systems

and software product lines.

Page 14

Highlights
The feature model of the BigLever Gears SPL Lifecycle Framework enables you

to model features in terms of one or more production lines. Figure 5 shows how

the framework supports interrelated production lines in the overall production

line for a midsize family car. This production line refers to an engine production

line and a telematics production line, which, in turn, refers to three lower-level

production lines: driver information, entertainment and navigation.

The feature model of the BigLever

Gears SPL Lifecycle Framework ena-

bles you to model features in terms

of one or more production lines.

Figure 5: A hierarchy of production lines from the BigLever Gears SPL Lifecycle Framework

Cathy Martin

Requirements engineering for systems

and software product lines.

Page 15

Highlights
The following sections briefly describe BigLever Gears production lines and

their key elements.

Production lines

Each production line has the following potential elements:

A set of modules that:

May have private features –

Reference a core asset, such as a Rational DOORS module, a Rational –

Rhapsody model, software source code or documentation

Include a set of feature profiles –

A set of mix-ins that also provides features and profiles that:

Are common to all the modules within the production line –

Can be used in other production lines –

A set of imported production lines

A set of matrices that define specific product instances

Features

A feature can be:

Optional—it is either selected or rejected.

Enumerated—it is one (and only one) of an enumerated set of options.

Set—it is zero, one or more of an enumerated set of options.

Assertions

Assertions can be added to features to signify interdependence between them.

For example:

If feature A is selected, then feature B must also be selected.

If feature C is selected, then feature D cannot be selected.

Assertions are logic statements and can be of arbitrary complexity and can ref-

erence any features that are in scope. This includes local features (in a module

or a mix-ins set) and features in local mix-ins or mix-ins imported from other

production lines.

BigLever Gears production lines

include a set of modules, a set of

mix-ins, a set of imported production

lines, a set of matrices that define

specific product instances, asser-

tions, features and feature profiles.

Cathy Martin

Requirements engineering for systems

and software product lines.

Page 16

Highlights

Feature profiles

A feature profile is a partial product that identifies valid subsets of all the pos-

sibilities offered in a set of features. A simple example of a set of production

lines—based on the hierarchy shown in figure 5—has 15 feature definitions

spread across six related production lines. Each feature set has no more than

six profiles, so it is quite easy to comprehend. However, the BigLever Gears

software calculated the total number of possible combinations of these 15 fea-

tures to be 9,408. This means that even a limited set of 15 features could yield

9,408 different potential products. Therefore, feature profiles provide a way of

reducing combinatorial complexity.

By allowing production lines to be interrelated, you have a means of scoping

the overall system into areas of specific domain knowledge while still allowing

information to be shared among the production lines as necessary.

Matrices

The matrices define finished products made up from lower-level components.

They have rows for each specified product and columns in which the user

selects the relevant options for each part of the system. The relevant options

are defined by:

The profiles for each module in the local production line.

The product names in the matrices for each imported production line.

BigLever feature profiles provide

a way of reducing combinatorial

complexity.

Matrices define finished prod-

ucts made up from lower-level

components.

Cathy Martin

Requirements engineering for systems

and software product lines.

Page 17

Highlights

The Rational DOORS/BigLever Gears Bridge solution

The variability expressed in the BigLever Gears SPL Lifecycle Framework

production lines is mapped into the core assets by introducing variation points

into those assets. In Rational DOORS software, any object can be made into

one of three types of variation points:

Optional—The object and its children are included or excluded depend-

ing on the variation point logic statement, which is held in Gears Logic—a

BigLever Gears–defined attribute—and created by the Rational DOORS/

BigLever Gears Bridge solution.

Variant—Variation point logic defines which variant in a set of variants will be

selected by the configurator when it builds a product based on a product profile.

Gears Variant—a BigLever Gears–defined attribute—defines the variants.

Text substitution—Variation point logic defines a pattern-based substitution,

usually in the Rational DOORS main column. You can also use this type of

variation point to load information into attributes instead of the main column.

The Rational DOORS/BigLever Gears Bridge solution provides access to a

BigLever Gears editor for the variation point logic that can reference features

that are in scope for the module concerned.

The BigLever Gears development methodology encourages developers to work

within the context of a product line and therefore to be aware of all the pos-

sibilities that exist for a module. BigLever Gears software provides a way to view

the results of applying the variation point logic to a module via an actuation

tool. This tool can be invoked from within BigLever Gears or Rational DOORS

software. In both cases, BigLever Gears software enables you to select which

particular product to use as the basis for the projection. The pick list is derived

from the relevant production line matrix.

The BigLever Gears development

methodology encourages develop-

ers to work within the context of

a product line and therefore to be

aware of all the possibilities that

exist for a module.

Variability expressed in the BigLever

Gears SPL Lifecycle Framework pro-

duction lines maps into core assets

by introducing variation points into

those assets.

Cathy Martin

Requirements engineering for systems

and software product lines.

Page 18

Highlights
When invoked from within Rational DOORS software, the actuation shows the

effects of the actuation on that module. When activated from within BigLever

Gears software, the actuation visits all the modules connected to all the relevant

production lines and applies the variation point logic to each module. The visited

modules can be Rational DOORS requirements modules, Rational Rhapsody

models, Rational Quality Manager test cases, documentation or source code.

The result of activation within Rational DOORS software is shown in the BigLever

Gears main projection column—which shows where objects have been removed

(optional variation points), which variant has been selected (variant variation

points) or the text that results from text substitution. This main projection view is

ideal for checking whether the variation point logic is behaving correctly.

However, it is sometimes necessary to provide a comprehensive Rational DOORS

module that contains only the projection for a specific product. You can accom-

plish this with BigLever Gears software by activating the product in a separate

Rational DOORS module from which all the BigLever Gears information has

been removed. In this module, the main projection goes into the Rational DOORS

main column. Any other attributes that are in the projection are shown in sepa-

rate columns using attributes of the correct type.

Rational DOORS and BigLever Gears

software provide organizations with a

holistic view into second-generation

product line management.

Cathy Martin

Requirements engineering for systems

and software product lines.

Page 19

Highlights

Conclusions

With the Rational DOORS/BigLever Gears Bridge solution, requirements engi-

neers can efficiently and effectively manage requirements for an entire product

line. You can realize the advantages and strategic benefits of second-generation

product line engineering—increased productivity, higher-quality products, faster

time to market and increased portfolio scalability—in the requirements stage

of the SPL development lifecycle.

The Rational DOORS/BigLever Gears Bridge solution enables you to create a

single, consolidated collection of requirements for the entire portfolio, maintain-

ing just one copy of common requirements that are shared across all products. It

also allows you to express requirements diversity using explicit variation points,

thereby facilitating the management of requirements that differ from one product

to another.

Rational DOORS requirements in a BigLever Gears software production line

are treated just like other assets, in which a superset of requirements for a full

product line is selected and configured to create subsets of requirements for

different product instances. Using Rational DOORS modules as first-class second-

generation product line reusable assets, you can now automate the configuration

of different instantiations of product requirements without a clone-and-own

approach and linking among requirements sets. You can express the full feature

diversity in requirements without the need for low-level attribute scripting or

one-size-fits-all requirements.

This reduced level of complexity enables you to quickly and efficiently deliver

more new products and features, while reducing the development effort and

optimizing product quality.

With the Rational DOORS/BigLever

Gears Bridge solution, requirements

engineers can efficiently and effec-

tively manage requirements for an

entire product line.

The solution enables you to create

a single, consolidated collection of

requirements for the entire portfolio.

It provides a reduced level of com-

plexity that enables you to quickly

and efficiently deliver more new prod-

ucts and features while reducing the

development effort and optimizing

product quality.

Cathy Martin

For more information

To learn more about how you can bring innovative products to the marketplace

faster using IBM Rational DOORS and BigLever Gears software, contact your

local IBM sales representative or IBM Business Partner, or visit:

ibm.com/software/rational/partners/biglever/requirements.html

ibm.com/software/awdtools/doors/

RAW14186-USEN-00

© Copyright IBM Corporation 2009

© Copyright BigLever Software, Inc. 2009

IBM Corporation

Software Group

Route 100

Somers, NY 10589

U.S.A.

BigLever Software, Inc.

10500 Laurel Hill Cove

Austin, TX 78730

U.S.A.

Produced in the United States of America

December 2009

All Rights Reserved

IBM, the IBM logo, ibm.com, Rational, and DOORS

are trademarks or registered trademarks of International

Business Machines Corporation in the United States,

other countries, or both. If these and other IBM trade-

marked terms are marked on their first occurrence in

this information with a trademark symbol (® or ™), these

symbols indicate U.S. registered or common law trade-

marks owned by IBM at the time this information was

published. Such trademarks may also be registered or

common law trademarks in other countries. A current

list of IBM trademarks is available on the Web

at “Copyright and trademark information” at

ibm.com/legal/copytrade.shtml

BigLever Software Gears is protected by U.S. Patent No.

7,543,269 and Patents Pending.

Other company, product, or service names may be

trademarks or service marks of others.

References in this publication to IBM products or services

do not imply that IBM intends to make them available in

all countries in which IBM operates. The information con-

tained in this documentation is provided for informational

purposes only. While efforts were made to verify the com-

pleteness and accuracy of the information contained in

this documentation, it is provided “as is” without warranty

of any kind, express or implied. In addition, this informa-

tion is based on IBM’s current product plans and strategy,

which are subject to change by IBM without notice. IBM

shall not be responsible for any damages arising out of

the use of, or otherwise related to, this documentation

or any other documentation. Nothing contained in this

documentation is intended to, nor shall have the effect of,

creating any warranties or representations from IBM (or its

suppliers or licensors), or altering the terms and conditions

of the applicable license agreement governing the use of

IBM software.

Any performance data for IBM and non-IBM products

and services contained in this document was derived

under specific operating and environmental conditions.

The actual results obtained by any party implementing

such products or services will depend on a large number

of factors specific to such party’s operating environment

and may vary significantly. IBM makes no representation

that these results can be expected or obtained in any

implementation of any such products or services.

Any material included in this document with regard to third

parties is based on information obtained from such parties.

No effort has been made to independently verify the accu-

racy of the information. This document does not constitute

an expressed or implied recommendation or endorsement

by IBM of any third-party product or service.

http://www.ibm.com/software/awdtools/doors/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/software/rational/partners/biglever/requirements.html
Cathy Martin

Cathy Martin

Cathy Martin

